Monatshefte für Cher

© by Springer-Verlag 1981

Weitreichende Anisotropieeffekte bei längerkettigen Amiden

Herbert Budzikiewicz*, Peter-Eric Vieth und Uwe Krügera

Institut für Organische Chemie, Universität Köln, D-5000 Köln 41, Bundesrepublik Deutschland

(Eingegangen 10. Dezember 1980. Angenommen 22. Dezember 1980)

Long-range anisotropic effects of long chain amides

In ¹H-NMR spectra of amids with long-chain aliphatic N-substituents one observes - despite of the free mobility of the aliphatic chain-splitting of the signals of the terminal methyl groups which is caused by the hindered rotation of the amide bond.

(Keywords: Amides; Hindered rotation; ¹H-NMR)

Einleitung

Bei der Strukturaufklärung¹ der Kniphofia-Alkaloide war aufgefallen, daß die ¹H-NMR-Spektren (s. Abb. 1) der Cinnamoylputrescin-Derivate 1—3 Aufspaltung des Signals der (CH₃)₂N-Gruppe zeigten, die

$$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_4\mathrm{N}(\mathrm{CH_3})\mathrm{CO}\,R$$

- 1 R = cis-CH = CH-C₆H₄OH(p)
- 2 R = cis-CH = CH—C₆H₄OCH₃(p)
- 3 R = trans-CH = CH—C₆H₄OCH₃(p)

$$\begin{array}{cccc} \operatorname{CH_3} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

a Neue Anschrift: c/o Byk Gulden Lomberg Chemische Fabrik GmbH, D-7750 Konstanz.

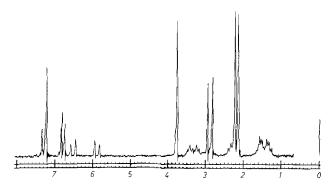


Abb. 1. $^1\mathrm{H}\text{-}\mathrm{NMR}\text{-}\mathrm{Spektrem}$ (100 MHz) von 2 bei 20 $^\circ\mathrm{C}$

Tabelle 1. Übersicht der untersuchten Modellsubstanzen

Verbindungstyp	R	n	Verbindung
CH ₃ N—C C ₆ H ₅	$(CH_3)_2N - (CH_2)_n - CH_3O - (CH_2)_n - (CH_3)_2CH - (CH_2)_n - CH_3CH_2 - (CH_2)_n - CH_2 - (CH_2)_n - CH_2$	2—6 3—6 3—6 2 4	7—11 12—15 16—19 20, 21
n -C ₅ \mathbf{H}_{11} N—C $\mathbf{C}_{6}\mathbf{H}_{5}$	$(\mathrm{CH_3})_2\mathrm{N}$ — $(\mathrm{CH_2})_n$ —	3	22
CH ₃ N-CC ₈ H ₅	$(C_2H_5)_2N-(CH_2)_n-(CH_2)_n-(CH_3)_2N-(CH_2)_n-(CH_2)$	2, 3 2 3	23, 24 25 2 6
CH ₃ N-CCO	$(CH_3)_2N-(CH_2)_n-(C_2H_5)_2N-(CH_2)_n-$	$2-5 \\ 2, 3$	27—30 31, 32
CH_3 $N-C$ R $(CH_3)_2N(CH_2)_n$	$\begin{array}{l}\mathrm{CH_2} -\!$	$ \begin{array}{c} 3 \\ 3 \\ 2 \\ 3 \\ 3 \\ 2 \\ 4 \end{array} $	33 34 35—37 43 44 40—42
$(CH_5)_3C$ R C_6H_5 C_6H_5 C_6H_5	$({ m CH_3})_2{ m N}$ — ${ m CH_2CH}({ m CH_3})$ — $({ m CH_3})_2{ m N}$ — $({ m CH_2})_n$ —	3	38 39

erst bei höheren Temperaturen verschwand. Dieses unerwartete Phänomen wirft einige Fragen auf, die durch Untersuchung von Modellverbindungen (s. Tabelle 1) in dieser Arbeit geklärt werden sollen, und zwar

- handelt es sich um einen inter- oder intramolekularen Effekt? Wenn intramolekular,
- steht er mit der gehinderten Rotation der Amidbindung in Zusammenhang?

Wenn ja,

- ist die Dimethylaminogruppe Voraussetzung für das Auftreten der Signalverdopplung,
- welche Bedeutung hat die Kettenlänge,
- welche der Säurerest, bzw.
- sind bestimmte intramolekulare Wechselwirkungen zu postulieren?

Allgemeine Vorbemerkungen zur behinderten Rotation um Amidbindungen

Der C—N-Bindung einer Amidgruppe kommt partieller Doppelbindungscharakter zu (angedeutet durch die Resonanzstruktur 5), was zur Behinderung der freien Drehbarkeit und damit zur Ausbildung zweier Rotamerer* führt, bei denen sich R und R' in unterschiedlicher magnetischer Umgebung befinden. Die Rotationsbarriere liegt i.a. nicht so hoch (in der Größenordnung von 60—80 kJ/mol), daß eine präparative Trennung möglich ist, sie gibt sich jedoch durch die Aufspaltung der ¹H-NMR-Signale z.B. der zum Amid-N α-ständigen Gruppen zu erkennen. Die Untersuchung der gehinderten Rotation auf NMR-spektroskopischem Wege ist seit der grundlegenden Arbeiten²-⁴ an Dimethylformamid und Dimethylacetamid ein bedeutendes Forschungsgebiet geworden. Da eine Reihe von Übersichtsartikeln⁵-6 zur Verfügung steht, sollen hier nur die für die folgende Diskussion wichtigsten Literaturergebnisse zusammengefaßt werden.

Die Rotationsbarriere hängt sowohl von elektronischen (die den Doppelbindungscharakter der C—N-Bindung beeinflussen — bei aromatischem R'' etwa durch Resonanzanteile von $\bf 6$) als auch von sterischen Faktoren (Destabilisierung des planaren Grundzustandes, aber auch — mit entgegengesetzter Wirkung — des Übergangszustandes durch Behinderung der freien Drehung) ab. Was die Rotamerenverteilung betrifft, so ist bei N-Alkylamiden (für die eine elek-

^{*} Die Unterscheidung soll im folgenden nach den Cahn-Ingold-Prelog-Regeln durch Angabe von Z (O Vorrang vor R'', R vor R') und E (R' Vorrang vor R) für ${\bf 5}$ erfolgen.

tronische Wechselwirkung zwischen den N-Substituenten und der Carbonylgruppe von untergeordneter Bedeutung ist) für 4 ($R'' \neq H$) Z-Konformation bevorzugt⁷.

Wichtiger für die Deutung unserer Ergebnisse ist eine wenigstens qualitative Diskussion der magnetischen Anisotropie der verschiedenen Amidgruppen. Bei Amiden aliphatischer Säuren werden nur die in der Amidebene cis zur Carbonylgruppe befindlichen α-Protonen entschirmt, die übrigen abgeschirmt, wobei der Effekt auf die transständigen α-Protonen als geringfügig angesehen wird⁸. Für Benzamide kommt das anisotrope Feld des Phenylringes hinzu. Da aus sterischen Gründen bei N-Alkyl-substituierten Verbindungen die Phenylgruppe aus der Amidebene herausgedreht ist, werden die zur Carbonylgruppe cis-ständigen α- und β-Protonen bei tieferem Feld beobachtet⁹⁻¹¹. Im Falle von (erzwungener¹²) Coplanarität^{13,14} kommen die α-Protonen in den Entschirmungsbereich, wobei die zur Carbonylgruppe trans-ständigen stärker beeinflußt werden, so daß sie im Extremfall¹² bei tieferem Feld erscheinen. Der Cinnamoylamid-chromophor ist im wesentlichen planar^{15–19}. Infolgedessen geraten zur Carbonylgruppe trans-ständige α-Protonen in den (durch das Feld des Phenylringes verstärkten) Entschirmungsbereich der C.C-Doppelbindung und erscheinen bei tieferem Feld.

Zu erwähnen sind schließlich auch Lösungsmitteleinflüsse 20 . So kommt es z. B. zu einer Schichtung von Amidgruppen und Benzolmole-külen (sofern dies nicht durch sterische Faktoren verhindert wird 21) in einer Weise, daß die zur Carbonyl-Gruppe trans-ständigen α -Protonen in deren Abschirmbereich gelangen und nunmehr bei höherem Feld erscheinen (durch diese "Benzolverdünnungsmethode" ist somit eine Zuordnung bei sterisch wenig anspruchsvollen N-Substituenten möglich 22,23).

Untersuchungen wurden bisher weitgehend auf zum Amid-N α oder allenfalls β -ständige Protonen beschränkt. Die wenigen Angaben über Signalaufspaltung weiter entfernter Protonen beziehen sich auf Verbindungen, bei denen bestimmte sterische Anordnungen durch Strukturelemente^{24,25} [z. B. CH₃CON(CH₃)CH₂COOCH₃, C₆H₅CON(CH₃)CH=CHCOCH₃], Ringe^{8,26,27} oder H-Brücken (Alkylamide von α -Aryl- α -hydroxy-thiosäuren²⁸) vorgegeben sind.

Ergebnisse

Die untersuchten Verbindungen sind in Tabelle 1 und 3 zusammengestellt (bei letzterer beziehen sich R, R' und R'' auf Formel 4). Untersucht wurde die Aufspaltung des Signals insbesondere der endständigen Protonen von aliphatischen N-Alkyl-substituenten in Ab-

hängigkeit von verschiedenen experimentellen Parametern (Tab. 2 und 3). Mit abnehmender Temperatur nimmt unterhalb der Koaleszenztemperatur die Größe der Aufspaltung zu, bis sie einen Maximalwert (Endaufspaltung) erreicht (Abb. 2).

Diskussion

Verdünnungsreihen

Um festzustellen, ob die beobachtete Signalaufspaltung auf einen intermolekularen Effekt zurückzuführen ist, wurde ihre Temperaturabhängigkeit bei 3 in Verdünnungsreihen im Verhältnis 1:2:4 und bei

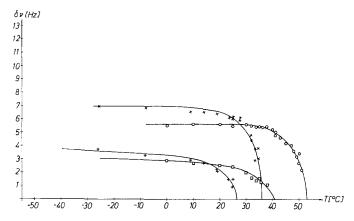


Abb. 2. Koaleszenzkurven für 7 [$\square N(CH_3)_2,\ \bigcirc\ NCH_3CO]$ und 8 ($+\ NCCH_3)_2,\ \times\ NCH_3CO$

28 im Verhältnis 1:4 gemessen. Innerhalb der Meßgenauigkeit konnte keine Konzentrationsabhängigkeit festgestellt werden, so daß intermolekulare Wechselwirkungen ausgeschlossen werden können.

Rotationsbarriere

Aus der Endaufspaltung der Amid-N-Methylgruppe Δv in Hz und der Koaleszenztemperatur T_c läßt sich nach der Eyring-Gleichung (1) die Freie Aktivierungsenthalpie ΔG^{\pm} für die gehinderte Rotation um die Amid-C—N-Bindung berechnen. Streng gilt die Eyring-Gleichung zwar nur bei gleicher Population beider rotamerer Formen, was aber bei unseren Beispielen (s. u.) weitgehend erfüllt ist. Bzgl. der ΔG^{\pm} -Werte sollte darauf hingewiesen werden, daß die Aktivierungsentopie für die Rotation nur wenig von Null verschieden und damit ΔG^{\pm} zur Beschreibung der Rotationsbarriere verwendet werden kann²⁹. Die für

einige ausgewählte Beispiele erhaltenen Werte sind in Tabelle 2 zusammengefaßt. Führt man die gleiche Berechnung für die Aufspaltung der Methylsignale der endständigen N(CH₃)₂-Gruppe durch, so erhält man innerhalb der Fehlergrenzen dieselben $\Delta\,G$ ‡ -Werte. Daraus folgt die wichtige Feststellung, daß auch diese Aufspaltung durch die gehinderte Rotation der Amidgruppe bedingt ist.

$$\Delta G^{\dagger} = 19.1 \, T_c \, (9.97 + \log T_c / \Delta v) \, \text{J/mol}$$
 (1)

Tabelle 2. Endaufspaltungen, Koaleszenztemperaturen und Δ G-Werte. Angaben in Klammern bedeuten, daß der Wert nicht mit der im Text angegebenen Genauigkeit (s. Diskussion) ermittelt werden konnte (Extrapolation bei Koaleszenztemperaturen über dem Siedepunkt des CDCl₃; verminderte Auflösung des Gerätes bei tiefen Temperaturen). Bzgl. der Formeln siehe Tab. 1

Verb.	Methyl- protonen am	Endaufspaltung Δ_{V} (ppm)	Koaleszenz- temp. (°C)	ΔG^{\pm} (kJ mol ⁻¹)
7	${f Amino-N}$	$0,\!29$	23	63,5
	$\operatorname{Amido-N}$	0,13	17	64,3
27	${f Amino-N}$	0,05	41	70,9
	$\operatorname{Amido-N}$	0,09	53	71,9
40	$\operatorname{Amino-N}$	0.01	57	$78,\!5$
	$\operatorname{Amido-N}$	0,13	(87)	(78,8)
	Acetyl-C	0,04	(80)	(81,0)
8	Amino-N	0.25	26	64,6
	$\operatorname{Amido-N}$	0,16	22	64.8
28	${f Amino-N}$	0,06	26	68,3
	${f Amido-N}$	0,12	36	68,9
41	$\operatorname{Amino-N}$	(0,02)?b	ś	3
	$\operatorname{Amido-N}$	0,14	(69)	74.4
	Acetyl-C	0,05	$54^{'}$	73,7
43	${f Amino-N}$	0,03	27	68.7
	${f Amido-N}$	0,14	(48)	(69,7)
44	Amino-N	(?)	—(?)	—(<u>;</u>)
	Amido-N	0.16	$(65)^{'}$	è '
3	Amino-N	0,17	37	67,3
	Amido-N	0,11	31	66.4
2 a	Amino-N	0,08	76	77,6
	Amido-N	(0,13)	(79)	(77,0)

a in CS2.

Variation von Amid- und Säurerest

Die Ergebnisse sind in Tabelle 3 zusammengestellt, wobei als charakteristische Temperaturen $-25\,^{\circ}\mathrm{C}$ (häufig schon die Endaufspaltung, da die Koaleszenzkurven bei tiefen Temperaturen praktisch

b Vgl. Tab. 3, Fußnoteg.

waagerecht verlaufen, vgl. Abb. 2) und 0 °C (um Anomalien wie maximale Aufspaltung bei höheren Temperaturen erkennen zu lassen) ausgewählt wurden. Da die Differenz der bei diesen beiden Temperaturen beobachteten Aufspaltungen fast ausnahmslos nicht größer als 0,01 ppm (und damit im Bereich der Meßgenauigkeit) war, hätte auch ein Vergleich der Endaufspaltungswerte keine anderen Ergebnisse gebracht. Die Meßgenauigkeit beträgt ± 2 °C und $\pm 0,01$ ppm. Abweichungen davon können sich ergeben aus Ungenauigkeiten wegen notwendiger Extrapolation bei Temperaturmessungen (gekennzeichnet durch die Angabe z. B. $\geq 0,03$ ppm), aus den Spektren selbst (Linienverbreiterung in der Nähe der Koaleszenztemperatur, schlecht aufgelöste Signale wie N- α - CH₂-Protonen — Genauigkeit $\pm 0,03$ ppm —, Überlappungen von Signalen usw.). Hierauf wird in den Tabellen hingewiesen. Alle Angaben beziehen sich auf CDCl₃ als Lösungsmittel.

Das wichtigste Ergebnis ist, daß Aufspaltung der Signale für die endständigen Methylgruppen selbst für solche Ketten beobachtet wird, bei denen die Methylgruppe vom Amid-N durch 8 Bindungen getrennt sind (11, 15, 19, 26). Anwesenheit eines Heteroatoms am Kettenende (N, O) ist dabei nicht Voraussetzung (19). Vergleich der Reihen 7—11 $[-N(CH_3)_2]$, 12-15 $(-OCH_3)$ und 23-26 $(-NR_2)$ mit 16-19 $[-CH(CH_3)_2]$ und **20–21** ($-CH_2CH_3$) sowie der beiden Ketten bei **22** $[-N(CH_3)_2$ und $-CH_2CH_3]$ zeigt, daß die Endaufspaltung für gleiche Kettenlängen bei Anwesenheit eines Heteroatoms jedoch größer ist als bei reinen Kohlenwasserstoffketten, wobei allerdings die Unterschiede mit zunehmender Kettenlänge geringer werden und schließlich in den Bereich der Meßgenauigkeit kommen. Eine größere Anzahl von terminalen Methylgruppen scheint — wie der Vergleich von (—CH₂CH₃) und **25** [—CH(CH₃)₂] zeigt — zu stärkeren Aufspaltungen zu führen (vgl. auch die Reihen 8-11 [$-N(CH_3)_2$] und 12-15(—OCH₃), wobei allerdings auf den gleichzeitigen Ersatz von N durch O geachtet werden muß). Wieweit die bei 17 [—CH(CH₃)₂] und 21 (—CH₂CH₃) erhaltene gleich große Aufspaltung signifikant ist, muß bei der durch die Verbreiterung der Methyltripletts bei längeren Alkylketten bedingten geringen Meßgenauigkeit offen bleiben.

Bezüglich des Einflusses des Säurerestes auf die Aufspaltung der Signale terminaler Methylgruppen läßt sich folgendes feststellen: Bei Amiden gesättigter Säuren kann — wie in der Einleitung dargelegt — unterschiedliche chemische Verschiebung analoger Signale bei den beiden Rotameren nur dem entschirmenden Einfluß der Amidgruppe auf den zum Carbonyl-Sauerstoff cis-ständigen Rest zugeschrieben werden. Die Aufenthaltsdauer der Dimethylaminogruppe im wirksamen Bereich ist — trotz freier Beweglichkeit der Kette — beim Z-Rotameren von 41 (z. U. von 42) für einen registrierbaren Effekt noch groß genug.

Verb.	R	R'	R''	-25°	t.C H3 0°
	(OII) N(OII)	CIT	O III	0.00	0.00
$\frac{7}{8}$	$(CH_3)_2N(CH_2)_2 (CH_3)_2N(CH_2)_3$	$\mathrm{CH_3}$ $\mathrm{CH_3}$	$\mathrm{C_6H_5} \ \mathrm{C_6H_5}$	$0,\!29 \\ 0,\!25$	$0,\!28 \\ 0,\!23$
9	$(CH_3)_2N(CH_2)_4$	CH_3	C_6H_5	0.23 0.14	$0.23 \\ 0.13$
10	$(CH_3)_2N(CH_2)_5$	CH_3	C_6H_5	0.07	0.06
11	$(CH_3)_2N(CH_2)_6$	CH_3	C_6H_5	≥0,03b	0.01^{c}
12	$\mathrm{CH_3O}(\mathrm{CH_2})_3$	CH_3	C_6H_5	0,19	0,18
13	$\mathrm{CH_3O}(\mathrm{CH_2})_4$	CH_3	C_6H_5	0,11	0,10
14	$\mathrm{CH_3O}(\mathrm{CH_2})_5$	CH_3	C_6H_5	0,05	0,05
15	$\mathrm{CH_3O}(\mathrm{CH_2})_6$	CH_3	C_6H_5	0,03	$\geq 0.01^{c}$
16	$(CH_3)_2CH(CH_2)_3$	$\mathrm{CH_3}$	C_6H_5	0,11	0.10^{e}
17	$(\mathrm{CH_3})_2\mathrm{CH}(\mathrm{CH_2})_4$	CH_3	C_6H_5	0,08	0,08
18	$(\mathrm{CH_3})_2\mathrm{CH}(\mathrm{CH_2})_5$	CH_3	C_6H_5	0,06	0.06
19	$(\mathrm{CH_3})_2\mathrm{CH}(\mathrm{CH_2})_6$	CH_3	C_6H_5	0,02	0,02
20	$\mathrm{CH_{3}(CH_{2})_{3}}$	CH_3	C_6H_5	$\geq 0.20^{\rm b}$	0,20
21	$\mathrm{CH_{3}(CH_{2})_{5}}$	CH_3	C_6H_5	0,08	0.07
22	$(CH_3)_2N(CH_2)_3$	$n\text{-}\mathrm{C}_5\mathrm{H}_{11}$	C_6H_5	$\geq 0.13^{b}$	0,12
				\geq 0,22b	0,21
23	$(C_2H_5)_2N(CH_2)_2$	CH_3	C_6H_5	0,21	0.20
24	$(C_2H_5)_2N(CH_2)_3$	CH_3	C_6H_5	$\geq 0.16^{b}$	0,15
25	$(i\text{-C}_3\mathrm{H}_7)_2\mathrm{N}(\mathrm{CH}_2)_2$	CH_3	C_6H_5	$0,\!25$	$0,\!24$
26	$(n\text{-}{ m C_4H_9})_2{ m N}({ m CH_2})_3$	CH_3	C_6H_5	0,05	\sim 0,03 $^{\rm c}$
27	$(CH_3)_2N(CH_2)_2$	CH_3	$CH = CHC_6H_5$	0,05	0.05
28	$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_3$	CH_3	$CH = CHC_6H_5$	$0,\!06$	0,05
29	$(CH_3)_2N(CH_2)_4$	CH_3	$CH = CHC_6H_5$	0,09	0,08
30	$(CH_3)_2N(CH_2)_5$	$ m CH^3$	$CH = CHC_6H_5$	0.05	
$\begin{array}{c} 31 \\ 32 \end{array}$	$(C_2H_5)_2N(CH_2)_2$	$_{ m CH_3}$	$CH = CHC_6H_5$ $CH = CHC_6H_5$	$_{g}^{0,05}$	0,04
3	$(C_2H_5)_2N(CH_2)_3$ $(CH_3)_2N(CH_2)_4$	$\mathrm{CH_3}$ $\mathrm{CH_3}$	$CH = CHC_6H_4OCH_3$ $CH = CHC_6H_4OCH_3$	0.17	$\substack{0.02\\0.17}$
		-		g	
$\frac{33}{34}$	$(CH_3)_2N(CH_2)_3$ $(CH_3)_2N(CH_2)_3$	$\mathrm{CH_3}$ $\mathrm{CH_3}$	${ m CH_2C_6H_5} \ ({ m CH_2)_2C_6H_5}$	—s ≥0.05b	$0.04 \\ 0.05$
3 4 35	$(CH_3)_2N(CH_2)_3$ $(CH_3)_2N(CH_2)_2$	CH_3	$C_6H_4CH_3(o)$	$\geq 0.03^{\circ}$ ~ 0.32	$0.05 \\ 0.30$
36	$(CH_3)_2N(CH_2)_2$ $(CH_3)_2N(CH_2)_2$	CH_3	$C_6H_4CH_3(m)$	0.25	$0.30 \\ 0.24$
37	$(CH_3)_2N(CH_2)_2$	$\widetilde{\mathrm{CH}}_3$	$C_6H_4CH_3(p)$	0,25	0,23
38	$(CH_3)_2NCH_2CH(CH_3)$	$C(CH_3)$	C_6H_5	~ 0.20 g	0,18g
	. 5/2 2 . 0/		V V	g	0.17g
39	$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_3$	$\mathrm{C}(\mathrm{CH_3})_3$	C_6H_5		
40	$({ m CH_3})_2{ m N}({ m CH_2})_2$	$ m CH_3$	$ ilde{\mathrm{CH}_3}$	g	$0,01^{\rm g,i}$
41	$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_3$	CH_3	CH_3		0,02g
42	$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_4$	CH_3	CH ₃		
43	$(CH_3)_2N(CH_2)_3$	CH_3	CH = CHCH ₃	0.03	0,03
44	$(\mathrm{CH_3})_2\mathrm{N}(\mathrm{CH_2})_3$	$\mathrm{CH_3}$	cyclohexyl		_

^a Siehe Text.

^b Mögliche Ungenauigkeiten wegen Extrapolation bei Temperaturmessungen.

<sup>C Linienverbreiterung in der N\u00e4he der Koaleszenztemperatur.
Wegen Signal\u00fcberlagerungen Angaben nicht m\u00fcglich.
Schlechte Aufl\u00fcsung des Methylsignals.</sup>

$\begin{array}{c}$	lo-N- $_{0^{\circ}}^{\mathrm{-CH_{3}}}$	$\begin{array}{c} \text{Amido-N-CH}_2{}^{\text{a}} \\ -25^{\circ} 0^{\circ} \end{array}$	Anmerkungen
0,12 0,16 0,16 0,16 0,15	0,12 0,15 0,16 0,16 0,14	ca. 0,33 ca. 0,28 ca. 0,30 ca. 0,30 ca. 0,30	
0,17 0,15 0,14 0,15 0,15	0,16 0,15 0,15 0,14 0,15	d d d d ca. 0,30	
0,16 0,15	0,16 0,15	ca. 0,30 ca. 0,30	
≥ 0.16 0.16	0,16 0,15	ea. 0,32 ea. 0,30 d	$\rm Pentyl\text{-}CH_3$
0.12 ≥ 0.15 0.11 0.15	$0,11 \\ 0,15 \\ 0,11 \\ 0,14$	d ca. 0.30 ca. 0.30 ca. 0.27 ca. 0.28	$-N(CH_3)_2$
0,09 0,12 0,06 0,08 0,10 0,10	0,09 0,11 0,06 0,08 0,10 0,10	—f —f —f —f —a ca. 0,08 —f	trans-Zimtsäure trans-Zimtsäure trans-Zimtsäure trans-Zimtsäure trans-Zimtsäure trans-Zimtsäure
$ \begin{array}{c} 0.11 \\ -g \\ \geq 0.05^{b} \\ 0.30 \\ 0.10 \\ 0.08 \end{array} $	0.10 0.04 0.30 0.10 $\sim 0.04^{\circ}$	f ca. 0,08 ca. 0,12 hca. 0,47 ca. 0,32 ca. 0,28	trans-Zimtsäure
0,13 0,14 0,11 0,14 0,16	0,13 0,14 0,11 0,13 0,16	ca. 0,07d ca. 0,05dd	$N(CH_3)_2$ $C(CH_3)_3$ bei -27°C und -5°C nur ein Rotameres Aufspaltung des Acetyl- $CH_3 \sim 0.03$ Aufspaltung des Acetyl- $CH_3 \sim 0.05$ Aufspaltung des Acetyl- $CH_3 \sim 0.02$

 $^{^{\}rm f}$ Zu schlechte Auflösung des Signals für Auswertung. $^{\rm g}$ Bei tiefen Temperaturen keine Feinstruktur. $^{\rm h}$ Wegen Signalüberlappung (aromatisches ${\rm CH_3}$). $^{\rm i}$ Maximale Aufspaltung bei $+20^{\circ}!$

Daß 44 (bei mit 41 gleicher Kettenlänge) keine Aufspaltung zeigt, ist wohl auf sterische Beeinflussung durch den voluminösen Rest zurückzuführen. Die für Amide ungesättigter Säuren beobachtete stärkere Aufspaltung, die sich auch bei längeren Ketten auswirkt, muß damit in einer Veränderung der Elektronenverteilung der Amidgruppe (was aber nur bei Konjugation zu erwarten wäre) oder im zusätzlichen Anisotropieeffekt des π-Systems ihre Erklärung finden. Daß rein mesomere Effekte (6) nicht allein ausschlaggebend sein können, zeigt die bei 34 gegenüber 41 und 44 größere Signalaufspaltung sowie die Tatsache, daß in der Reihe 35—37 das o-Toluvlamid, bei dem aus sterischen Gründen der Phenylring am stärksten aus der Amidebene gedreht ist, den größten Effekt zeigt. Die für die Benzamide 7-21 beobachtete Abnahme der Aufspaltung des Signals der terminalen Methylgruppen mit zunehmender Kettenlänge entspricht der in Folge der zunehmenden Flexibilität der Ketten abnehmenden statistischen Aufenthaltsdauer der Methylprotonen in dem durch den Phenylring bedingten Bereich geringerer Abschirmung. Die z. B. bei 7 und 8 beobachtete deutlich größere Aufspaltung des Signals der endständigen verglichen mit dem der Amido-N-Methylgruppe findet ihre Erklärung darin, daß einmal der entgegegesetzte Einfluß von Amidgruppe und Phenylring mit zunehmender Kettenlänge abnimmt (vgl. die geringer werdende Wirkung der Amidgruppen bei den Acetamiden 41 und 42) und zum anderen die terminalen Gruppen näher an den Abschirmbereich des Phenylringes herankommen können. Daraus wäre zu folgern, daß die Aufspaltung mit zunehmender Kettenlänge ein Maximum durchlaufen sollte. Tatsächlich ist auch der für N.N-Dimethylbenzamid (4, $R = R' = CH_3$, $R'' = C_6 H_5$)^{13,14} ermittelte Wert (0,12 ppm) kleiner als der für die Butylkette von 20 beobachtete (0,20 ppm).

Die Ergebnisse bei den Cinnamiden 27—30 bestätigen diese Überlegungen: Die größere Entfernung des Phenylringes von der Amidgruppe bedingt, daß die terminalen Methylgruppen erst bei entsprechend längerer Kette in den Bereich gelangen, in dem die unterschiedliche Beeinflussung meßbar wird. Die einander entgegenlaufenden Effekte — Aufenthaltsmöglichkeit im Bereich stärkerer Abschirmung und geringer werdende Aufenthaltsdauer — führen zu der bei 29 beobachteten Maximalaufspaltung. Bei 27 und 28 überwiegt demnach der Einfluß der Amidgruppe und der Doppelbindung (vgl. hierzu auch das Crotonamid 43).

Eine weitere Bestätigung der dargelegten Deutung liefern die durch Benzolverdünnungsexperimente getroffenen Signalzuordnungen. In Übereinstimmung mit Literaturangaben erscheinen die zur Carbonylgruppe cis-ständigen Amid-Methylsignale für Benzamide^{9,30} bei tieferem, für Cinnamide bei höherem Feld. Für die untersuchten

Benzamide 7 und 8 liegen die Signale der terminalen Methylgruppen bei E-Rotameren bei höherem Feld, bedingt durch die größere Nähe zum Phenylring. Bei den Cinnamiden 27 und 28 kommt es zur selben Zuordnung. Daraus ist zu schließen, daß hauptsächlich der Abschirmbereich der Doppelbindung effektiv wird. Für 3 liegen die Verhältnisse umgekehrt: Das N(CH₃)₂-Signal liegt beim Z-Isomeren bei höherem Feld. Offensichtlich kann sich die Gruppe bei dieser Kettenlänge dem Entschirmungsbereich des in der Amidebene liegenden Benzolringes nähern.

Ergänzende Untersuchungen

Bei 1—3 und 7—34 sind die beiden rotameren Formen etwa gleich populiert (unterschiedliche Population maximal 1:2). Durch Benzolverdünnungsexperimente konnte festgestellt werden, daß bei 0° bei 28 die Z-Form, bei den übrigen untersuchten Amiden (s. o.) die E-Form etwas überwiegt. Nur wenn ein sehr sperriger Amid-N-Substituent vorliegt (39), wird ausschließlich ein Rotameres beobachtet. Zwei sperrige Substituenten (38) führen wieder zum Vorliegen beider Formen, wobei allerdings die besonderen sterischen Verhältnisse zu einer geringen Aufspaltung der Signale der terminalen CH₃-Gruppen als bei 7 führen. Bei Zusatz³¹ zunehmender Mengen von CF₃COOD wandern unabhänig von der Meßtemperatur bei 3, 7, 8, 27 und 28 die Signale der N(CH₃)₂-Gruppe zu tieferen Feldern, wobei gleichzeitig die der E-Form entsprechenden Signale der Amino- wie der Amido-Methylgruppen an Intensität abnehmen und schließlich ganz verschwinden. Bei Protonierung der N(CH₃)₂-Gruppe bleibt somit nur die Z-Form übrig. Möglicherweise kommt es zu einer Wechselwirkung zwischen der NH(CH₃)₂+-Gruppe und dem negativen Ende des Amid-Dipols.

Schlußfolgerungen

Die Anisotropie einer Amidgruppe führt dazu, daß es bei gehinderter Rotation um die Amidbindung zu einer Azfspaltung des ¹H-NMR-Signals der terminalen Methylgruppe längerer Amin-alkylketten kommt: selbst bei frei beweglichen Ketten führt der statistische Aufenthalt in den für die beiden Rotameren unterschiedlichen Feldräumen in der Nachbarschaft der Amidgruppe zu meßbaren Effekten. Bei Amiden ungesättigter (insbesondere aromatischer) Säuren wird der Anisotropieeffekt der Amidgruppe von dem der Doppelbindung bzw. des Aromaten überlagert. Die Aufenthaltswahrscheinlichkeit der terminalen Methylgruppe in den effektiven Bereichen der Anisotropiezentren nimmt, wie erwartet, mit zunehmender Kettenlänge ab, was in den meisten Fällen zu einer parallelgehenden Abnahme der Größe der

Aufspaltung führt. Gelegentlich wird jedoch auch beobachtet, daß die Aufspaltung mit zunehmender Kettenlänge ein Maximum durchläuft. Dies ist dann der Fall, wenn einander entgegenwirkende Effekte (z. B. verminderte Aufenthaltsdauer bei langen Ketten gegenüber der bei kürzeren Ketten nicht möglichen optimalen Annäherung an ein Anisotropiezentrum) zum Tragen kommen. Die "Reichweite" des Anisotropieeffektes, d. h. die maximale Kettenlänge, bei der noch Aufspaltung meßbar ist, hängt somit von der Art des Säurerestes ab, wobei mit einer Wirkung über acht Bindungen (die längsten untersuchten Ketten) noch nicht die Grenze erreicht sein dürfte.

Die vergleichsweise größere Aufspaltung bei Ketten, die ein Heteroatom enthalten, legt die Ausbildung bevorzugter Konformationen (etwa durch Wechselwirkung zwischen dem Heteroatom und der Amidgruppe) nahe. Daß es sich dabei um eine durch die Grenzformel 45 angedeutete Wechselwirkung handelt, ist auszuschließen, da dann bei Benzamiden die terminalen Methylgruppen im Entschirmungsbereich des Benzolringes lägen, was mit den oben beschriebenen Signalzuordnungen nicht in Einklang zu bringen wäre. Dies findet auch seine Bestätigung darin, daß bei 7,8 und 28 im IR-Spektrum bzgl. der Carbonylbande bei Messung oberhalb und unterhalb der Koaleszenztemperatur keine Unterschiede beobachtet wurden, und steht im Einklang mit UV-Untersuchungen von ω-Dialkylaminoalkylphthalimiden³².

Die bei Acetamiden beobachtete Abnahme der Aufspaltung bei tiefen Temperaturen könnte umgekehrt auf die Bevorzugung gestreckter Konformationen zurückgeführt werden. Das bei den Kniphofia-Alkaloiden 1—3 beobachtete Phänomen (s. Einleitung) ist somit auf die gehinderte Rotation der Amidbindung zurückzuführen. Daß gerade bei diesen Verbindungen die Aufspaltung terminaler Methylsignale bei längeren Ketten (6 Glieder) erstmalig auffiel, lag neben der relativ hohen Koaleszenztemperatur darin, daß (im Gegensatz zu n-Alkylketten) das Signal der terminalen N(CH₃)₂-Gruppe isoliert und gut ausgeprägt erschien (s. Abb. 1).

Die Untersuchungen wurden am Institut der Gesellschaft für Molekularbiologische Forschung, 3301 Stöckheim, begonnen und am Institut für Organische Chemie der Universität zu Köln zu Ende geführt. Sehr danken möchten wir Herrn Prof. Dr. K. Müllen, Köln, für die kritische Durchsicht des Manuskripts und viele wertvolle Anregungen.

Experimenteller Teil

Die NMR-Spektren wurden mit den Geräten Varian A-60 und HA-100 gemessen. Lösungsmittel (sofern nicht anders angegeben) CDCl₃, Konzentration 0,05 bis 0,1 molar. Temperaturmessung erfolgte vor und nach Aufnahme

Tabelle 4. NMR-Spektren der untersuchten Amide. δ-Werte, TMS als innerer Standard. Bei Signalüberlagerung sind Bereiche angegeben, Zusammenfallen von Signalen ist durch (\rightarrow) angedeutet. Wenn Signalaufspaltung bereits bei Zimmertemperatur beobachtet wird, ist der Mittelwert angegeben. NMR-Daten für Verbindungen 1-3 finden sich in Lit. 1. Bzgl. der Formeln siehe Tabelle 1

Verb.	$(U\Pi_3)_2N$	ω - CH_2	$(CH_2)_{n-2}$	α -CH $_2$	Amid-CH ₃	\mathbf{C}
			(4/10 4			
7	2,13	$2,\!44$	_	3,47	2,98	7,
8^{a}	$2,\!23$	2,30	~ 1.80	$\sim 3,40$	2,98	7
9	$2,\!23$	\sim 2,25	1,2—1,8	$3,\!36$	2,97	7
10	2,22	\sim 2,30	1,1—1,8	3,34	2,94	7
11	2,17	\sim 2,20	1,1—1,8	$\sim 3,35$	2,97	7
22 ^b	2,12	\sim 2,20	~ 1,70	$\sim 3,40$	_	7
CH ₃ O(CI	$\mathrm{H}_2)_n\mathrm{N}(\mathrm{CH}_3)\mathrm{CO}$	$\mathrm{C}_{6}\mathrm{H}_{5}$				
Verb.	$\mathrm{CH_{3}O}$	$\omega\text{-}\mathrm{CH}_2$	$(\mathrm{CH}_2)_{n-2}$	$\alpha\text{-CH}_2$	${\rm Amid\text{-}CH_3}$	C
12	3,26	→ α-CH ₂	1.85	3,2-3,7	2,98	7
				~3.4	$^{-,00}_{2,95}$	7
13	3.25	$\rightarrow \alpha$ -CH ₂	1.3 - 1.9	~ ე.⊈	4.00	
13 14	$^{3,25}_{3,28}$	$\rightarrow \alpha$ -CH ₂ $\rightarrow \alpha$ -CH ₂		3,2—3,6		
14 15	3,28 3,27	$ \rightarrow \alpha \text{-CH}_2 $ $ \rightarrow \alpha \text{-CH}_2 $	1,2—2,0 1,1—1,8	3,2—3,6 3,2—3,6	2,98 2,94	7
14 15	3,28	$\begin{array}{c} \rightarrow \alpha\text{-}CH_2 \\ \rightarrow \alpha\text{-}CH_2 \\ \end{array}$ $\begin{array}{c} \rightarrow \alpha\text{-}CH_2 \\ \end{array}$ $\begin{array}{c} \alpha\text{-}CH_2 \\ \end{array}$ $\begin{array}{c} \alpha\text{-}CH_3 \\ \end{array}$	1,2—2,0 1,1—1,8	3,2—3,6 3,2—3,6	2,98 2,94	7
14 15 (CH ₃) ₂ CE Verb.	3,28 3,27 $I(CH_2)_nN(CH_3)_2$ CH_3C	$\begin{array}{c} \rightarrow \alpha\text{-CH}_2 \\ \rightarrow \alpha\text{-CH}_2 \\ \end{array}$ $\begin{array}{c} \rightarrow \alpha\text{-CH}_2 \\ \\ \rightarrow \alpha\text{-CH}_2 \\ \end{array}$ $\begin{array}{c} \alpha\text{-CH}_2 \\ \\ \alpha\text{-CC} \\ \end{array}$	$1,2-2,0$ $1,1-1,8$ und $CH_3(CH_2)_{n-1}$ $H_2)_{n-1}$	3,2— $3,63,2$ — $3,6(2)_n N(CH_3)CC\alpha-CH_2$	$2,98$ $2,94$ $0C_6H_5$ Amid-CH $_3$	7 7
14 15 (CH ₃) ₂ CE Verb.	3,28 3,27 $I(CH_2)_nN(CH_3)_2$ CH_3C 0,86		$1,2-2,0$ $1,1-1,8$ und $CH_3(CH_{2})_{n-1}$ $H_{2})_{n-1}$ $-1,9$	3,2— $3,63,2$ — $3,6(2)_nN(CH3)CO\alpha-CH2(3,36)$	$^{2,98}_{2,94}$ $^{0C_{6}H_{5}}_{Amid-CH_{3}}$	7 7 C
14 15 (CH ₃) ₂ CE Verb.	3,28 3,27 $I(CH_2)_nN(CH_3)_2$ CH_3C 0,86 0,86	$\begin{array}{c} \rightarrow \alpha\text{-CH}_2 \\ \rightarrow \alpha\text{-CH}_2 \\ \end{array}$ $\begin{array}{c} \rightarrow \alpha\text{-CH}_2 \\ \rightarrow \alpha\text{-CH}_2 \\ \end{array}$ $\begin{array}{c} \alpha\text{-CH}_2 \\ \rightarrow \alpha-C$	$1,2-2,0$ $1,1-1,8$ und $CH_3(CH_{1}(CH_{2})_{n-1}$ $H_{2})_{n-1}$ $-1,9$ $-1,9$	3,2— $3,63,2$ — $3,64$ 2 2 2 2 2 3 4 4 4 4 4 4 4 4 4 4	$^{2,98}_{2,94}$ $^{0}C_{6}H_{5}$ $^{0}C_{1}H_{5}$ $^{0}C_{1}H_{5}$ $^{0}C_{2}H_{5}$ $^{0}C_{1}H_{5}$ $^{0}C_{2}H_{5}$ $^{0}C_{2}H_{5}$ $^{0}C_{1}H_{5}$ $^{0}C_{2}H_{5}$	7 7 7
14 15 (CH ₃) ₂ CH Verb.	3,28 3,27 $I(CH_2)_nN(CH_3)_5$ CH_3C 0,86 0,86 0,86 0,85	$\begin{array}{c} \rightarrow \alpha\text{-CH}_{2} \\ \rightarrow \alpha\text{-CH}_{2} \\ \end{array}$ $\beta\text{COC}_{6}H_{5}$ $\beta\text{CCC}_{6}H_{5}$ $\beta\text{CCC}_{7}H_{7}$ $\beta\text{CCC}_{8}H_{7}$ $\beta\text{CCC}_$	$1,2-2,0$ $1,1-1,8$ und $CH_3(CH_{2})_{n-1}$ $H_2)_{n-1}$ $-1,9$ $-1,9$ $-1,9$	3,2— $3,6$ $3,2$ — $3,6$ $3,2$ — $3,6$ $3,2$ — $3,6$ $3,36$ $3,38$ $3,38$	2,98 2,94 OC ₆ H ₅ Amid-CH ₃ 2,97 2,97 2,97	7 7 7
14 15 (CH ₃) ₂ CE Verb.	3,28 3,27 $I(CH_2)_nN(CH_3)_2$ CH_3C 0,86 0,86	$\begin{array}{c} \rightarrow \alpha\text{-CH}_{2} \\ \rightarrow \alpha\text{-CH}_{2} \\ \end{array}$ $\begin{array}{c} \rightarrow \alpha\text{-CH}_{2} \\ \rightarrow \alpha\text{-CH}_{2} \\ \end{array}$ $\begin{array}{c} \alpha\text{-CH}_{2} \\ \rightarrow \alpha-C$	$1,2-2,0$ $1,1-1,8$ und $CH_3(CH_{1}(CH_{2})_{n-1}$ $H_{2})_{n-1}$ $-1,9$ $-1,9$	3,2— $3,63,2$ — $3,63,2$ — $3,6\alpha-CH2\alpha-CH23,363,383,383,383,35$	2,98 2,94 OC ₆ H ₅ Amid-CH ₃ 2,97 2,97 2,97 2,97	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
14 15 (CH ₃) ₂ CH Verb.	3,28 3,27 $I(CH_2)_nN(CH_3)_2$ CH_3C 0,86 0,86 0,85 0,85	$\begin{array}{c} \rightarrow \alpha\text{-CH}_{2} \\ \rightarrow \alpha\text{-CH}_{2} \\ \end{array}$ $\begin{array}{c} \rightarrow \alpha\text{-CH}_{2} \\ \rightarrow \alpha\text{-CH}_{2} \\ \end{array}$ $\begin{array}{c} \alpha\text{-CH}_{2} \\ \rightarrow \alpha-C$	$1,2-2,0$ $1,1-1,8$ und $CH_3(CH_2)_{n-1}$ $H_2)_{n-1}$ $-1,9$ $-1,9$ $-1,9$ $-1,9$	3,2— $3,6$ $3,2$ — $3,6$ $3,2$ — $3,6$ $3,2$ — $3,6$ $3,36$ $3,38$ $3,38$	2,98 2,94 OC ₆ H ₅ Amid-CH ₃ 2,97 2,97 2,97	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7

3,43

3,42

 ~ 3.35

3,42

2,98

2,97

3,03

2,99

7,32

7,34

7,32

7,34

Et-CH₂: 0,95

Et-CH₂: 1,04 $iPr\text{-}CH: \rightarrow \alpha CH_2$

nBu-CH₂: 2,35; 1,0—1,8

0.95

1,04

0,94

0,90

2,57

2,20

 $\sim 2,70$

 ~ 2.35

1,84

 $\sim 1,70$

23

24

25

26

$(CH_3)_2N$	$\Gamma(\mathrm{CH}_2)_n \mathrm{N}(\mathrm{C})$	$^{\mathrm{CH}_3}$) $^{\mathrm{CH}}$ =	$\mathrm{CHC}_6\mathrm{H}_5$	(tr) und	$(\mathrm{C_2H_5})_2\mathrm{N}$	$(\mathrm{CH}_2)_n\mathrm{N}(\mathrm{C}$	$^{\circ}\mathrm{H}_{3})\mathrm{CH}=\mathrm{C}$	$\mathrm{HC_6H_5}$ (tr)
Verb.	$(\mathrm{CH_3})_2\mathrm{N}$ $\mathrm{CH_3C}$	$\omega\text{-CH}_2$	$(\mathrm{CH}_2)_n$	_2 α-C	$ m H_2$ Amid	-CH ₃ C ₆ H ₅	CH = 0	CH sonstige
27	2,24	2,48		3,44	5 3,07	7,2—	7,5 6,83;	7,66
28	2,20	2,48	1,72	3,50		7,1—		
29	2,30	\sim 2,45		-1,9 $3,52$		7,3—	, , , , ,	/
30	2,30	\sim 2,25	,	-1,9 $3,48$,	7,2—		
31	0,98	2,55	~ 1.7	3,50	,	7,2—		
32	0,98	2,31	1,1—	-1,9 3,48	3,06	7,1—	7,7 6,93;	7,74 Et-CH ₂ : $2,4$
$(CH_3)_2N$	$\mathrm{V}(\mathrm{CH}_2)_n\mathrm{N}(\mathrm{C})$	${ m CH_3}){ m CO}({ m C})$	$\mathrm{H}_2)_m\mathrm{C}_6\mathrm{H}$	$_{4}X$				
Verb.	$(\mathrm{CH_3})_2 N$	$\omega\text{-}\mathrm{CH}_2$	$(\mathrm{CH}_2)_{n-2}$	$_2$ α -CH $_2$	Amid-CE	I ₃ Aroma	ten so	onstige
	2.42	2.20					~	0.77
33	2,16	~2,20	1,67	3,31	2,87	7,21		CH ₂ : 3,63
34 35	2,16	$\sim 2,20$	~1,60	$\frac{3,32}{2,46}$	2,87	7,21		$(CH_2)_2: 2.5-3.0$
36	$2,14 \\ 2,18$	$\frac{2,50}{2,49}$	_	$\frac{3,46}{3,52}$	$\frac{2,97}{3,02}$	$^{7,26}_{7,27}$		l-CH $_3$: 2,30 l-CH $_3$: 2,35
30 37	$\frac{2,18}{2,18}$	$\frac{2,49}{2,28}$		3,54	$\frac{3,02}{3,02}$	$7,27 \\ 7,23/7$		$1-\mathrm{CH_3}: 2,33$ $1-\mathrm{CH_3}: 2,34$
<i>.</i>	2,10	2,20		0,0 x	5,02	7,20/	, HT LOIUY	-O113. 2,5±
$(CH_3)_2N$	$\mathrm{C_3H_6N}(t-$	$C_4H_9)CO6$	$\mathbb{C}_6\mathrm{H}_5$					
Verb.	(CH_3)	₂ N ω-C	CH ₂ (0	$(H_2)_{n-2}$	$\alpha\text{-CH}_2$	t-Bu	C_6H_5	sonstige
38	2,10	3,02	2	_		1,47	$7,\!32$	CHCH ₃ : ?; 1,08
39	1,94	1,8		-1,5	$3,\!27$	1,53	7,28	0110113, 1,00
(CH ₃) ₂ N	$(\mathrm{CH}_2)_n\mathrm{N}(\mathrm{C})$	H ₃)COR						
Verb.	$(CH_3)_2N$	-	$(CH_2)_{n-2}$	α-CH ₂ A	mid-CH ₃ (COCH ₃	sonst	tige
40	$2,\!27$	2,43 -		3,43	2,98 2	2,10		
41	2,18	,				2,04		
42	$^{-,20}_{2,20}$,	,3—1,8	*		2,09		
43	2,24						e-CH ₃ 1,9;	CH = CH 6,4-7,1
44	$2,\!23$	2,28 -	→ Ring	$3,\!39$	2,98 -	Ring	: 1,2-2,0	

 $^{^{\}rm a}$ 8 ist in der Literatur beschrieben³5, von seinem $^{\rm 1}H\text{-NMR-Spektrum}$ jedoch nur das Aromatensignal angegeben. $^{\rm b}$ Bei 22 sind die Werte für die Dimethylaminopropyl- und die n-Pentyl-

kette getrennt angegeben.

jeder Probe entweder über ein Thermoelement (Genauigkeit $\sim \pm 1^{\circ}$) oder durch Ermittlung des temperaturabhängigen Abstandes der Signale einer geeichten Methanol- bzw. (für höhere Temperaturen) Ethylenglycolprobe ($\sim \pm 2^{\circ}$). Darstellung der untersuchten Verbindungen erfolgte — sofern Zwischenprodukte nicht kommerziell erhältlich waren — nach den folgenden allgemeinen Schemata:

- a) Verbindungen vom Typ R_2 N—(CH $_2$) $_n$ —N(CH $_3$)—COR' bzw. CH $_3$ O—(CH $_2$) $_n$ —N(CH $_3$)—COR.
 - $Br(CH_2)_nBr + Phthalimid-K \rightarrow N-(\omega-Bromalkyl-)phthalimid, + R_2NH \rightarrow$
- → N-(ω -Dialkylamino-)phthalimid, + N₂H₄ → R₂N(CH₂)_nNH₂, + CCl₃CHO →
- $\rightarrow R_2 N(CH_2)_n NHCHO$, $+ LiAlH_4 \rightarrow R_2 N(CH_2)_n NHCH_3$, $+ R'COCl \rightarrow$
- → R_2 N(CH₂)_nN(CH₃)COR'. Die ω-Methoxyverbindungen wurden durch Umsetzen der entsprechenden N-(ω-Bromalkyl-)phthalimide mit CH₃ONa erhalten.
 - b) Verbindungen vom Typ $RCH_2N(CH_3)COR'$.
- RCOĆl + CH₃NH₂ $\rightarrow R$ CONHĈH₃, + LiAlH₄ $\rightarrow R$ CH₂NHCH₃ usw. In gleicher Weise wurde bei **22** der n-Pentylrest durch Umsetzung von 1-Amino-3-dimethylaminopropan mit Pentansäurechlorid eingeführt.
 - c) Verbindungen vom Typ R—N(t—C₄H₉)CO \tilde{R}' .
- $t-C_4H_9NH_2 + RBr \rightarrow R-NH-C_4H_9$ usw.

Zwischen- und Endprodukte wurden durch ihre Siedepunkte sowie NMRund Massenspektren charakterisiert (bzgl. der Endprodukte s. Tabelle 4).

Genaue Angaben finden sich in Lit. 33,34 und können auf Wunsch zur Verfügung gestellt werden.

Literatur

- ¹ Ripperger, H., Schreiber, K., Budzikiewicz, H., J. Prak. Chemie 312, 449 (1970).
- ² Phillips, W. D., J. Chem. Phys. 23, 1363 (1955).
- ³ Gutowsky, H. S., Holm, C. H., J. Chem. Phys. **25**, 1228 (1956).
- ⁴ Rabinovitz, M., Pines, A., J. Amer. Chem. Soc. **91**, 1585 (1969).
- ⁵ Stuart, E. W., Siddall, T. H., III, Chem. Rev. 70, 517 (1970).
- ⁶ Jackman, L. M., in Dynamic Magnetic Resonance Spectroscopy (Jackman, L. M., Cotton, E. A., Hrsg.), Kapitel 7. New York: Academic Press. 1975.
- ⁷ LaPlanche, L. A., Rogers, \tilde{M} . T., \tilde{J} . Amer. Chem. Soc. **85**, 3728 (1963) und **86**, 337 (1964).
- 8 Paulsen, H., Todt, K., Angew. Chemie 78, 943 (1966); Chem. Ber. 100, 3385 (1967).
- ⁹ Lewin, A. H., Tetrahedron Lett. 1971, 3583.
- ¹⁰ Lewin, A. H., Frucht, M., Tetrahedron Lett. **1970**, 1079.
- ¹¹ Lewin, A. H., Frucht, M., Bovey, F. A., Tetrahedron Lett. 1970, 1083 und 1970, 3707.
- ¹² Matsubayashi, G., Tanaka, T., J. Inorg. Nucl. Chem. 31, 1963 (1969); Org. Magn. Reson. 2, 219 (1970).
- ¹³ Jackman, L. M., Kavanagh, T. E., Haddon, R. C., Org. Magn. Reson. 1, 109 (1969).
- ¹⁴ Korver, P. K., Spaargaren, K., Haak, P. J. v. d., deBoer, T. J., Org. Magn. Reson. 2, 295 (1970).
- ¹⁵ Meester, M. A. M., Schenk, H., Rec. trav. chim. Pavs-Bas 90, 508 (1971).
- ¹⁶ Kruk, C., Spaargaren, K., Spectrochim. Acta **27 A**, 77 (1971).

- ¹⁷ Spassov, S. L., Dimitrov, V. S., Agova, M., Kantschowska, I., Todorova, R., Org. Magn. Reson. 3, 551 (1971).
- ¹⁸ Spargaaren, K., Korver, P. K., Haak, P. J. v. d., deBoer, T. J., Org. Magn. Reson. 3, 605 (1971) und 3, 615 (1971).
- ¹⁹ Spassov, S. L., Buzova, T., Chorbanov, P., Z. Naturforsch. 25 b, 347 (1970).
- ²⁰ Drakenberg, T., Tetrahedron Lett. 1972, 1743.
- ²¹ Krüger, U., Hettler, H., Ber. Bunsenges. f. phys. Chem. **73**, 15 (1969).
- ²² Hatton, J. v., Richards, R. E., Molecular Phys. 3, 253 (1960) und 5, 139 (1962).
- ²³ Engler, E. M., Laszlo, P., J. Amer. Chem. Soc. 93, 1317 (1971).
- ²⁴ Love, A. L., Alger, T. D., Olsen, R. K., J. Phys. Chem. **76**, 853 (1972).
- ²⁵ Dabrovsky, J., Kozerski, L., Org. Mang. Reson. 5, 469(1973).
- ²⁶ Toldy, L., Radies, L., Tetrahedron Lett. **1966**, 4753.
- ²⁷ Johns, S. R., Lamberton, J. A., Sioumis, A. A., Chem. Commun. 1966, 480.
- ²⁸ Kalinowski, H.-O., Lubosch, W., Seebach, D., Chem. Ber. 110, 3733 (1977).
- ²⁹ Lit.⁶, S. 208.
- ³⁰ Wittacker, A. G., Moore, D. W., Siegel, S., J. Phys. Chem. **68**, 3431 (1964).
- 31 Vgl. Lit.6, S. 214.
- ³² Barlow, J. H., Davidson, R. S., Lewis, A., Russel, D., J. Chem. Soc. Perkin II 1979, 1103.
- 33 Vieth, P. E., Diplomarbeit, TU Braunschweig, 1970.
- ³⁴ Vieth, P. E., Dissertation, TU Braunschweig, 1974.
- 35 Dätwyler, P., Bosshardt, H., Bernhard, H. O., Hesse, M., Helv. Chim. Acta 61, 2646 (1978).